Tutorial Note V

The solutions of exercise 5 and exercise 6 are in the solutions of homework I. We only present the proof of Hopf lemma in this notes, as a complement to exercise 5, because the key idea of exercise 5 that $(a, b) \cdot \nabla u \ge 0$ at the maximum point is related to the Hopf lemma.

Theorem 0.1 (Hopf Lemma)

Suppose that $u \in C^2(\overline{B_R})$ is harmonic in B_R , attains its maximum at $x_0 \in \partial B_R$, and is not a constant. Then $\frac{\partial u}{\partial n}(x_0) > 0$.

Remark 0.1

Note that it is easy to see that $\frac{\partial u}{\partial n} \ge 0$. The key of the Hopf lemma is that the normal derivative is strictly greater than 0.

Proof. Suppose that the maximum of u is M. By the strong maximum principle, u < M in B_R . Consider

$$v = u + \varepsilon (\mathrm{e}^{-\alpha |x|^2} - \mathrm{e}^{-\alpha R^2}),$$

where ε is small and α is large and they will be determined later.

$$\Delta v = \varepsilon e^{-\alpha |x|^2} (4\alpha^2 |x|^2 - 2n\alpha).$$

On the annulus A(R/2, R),

$$4\alpha^2 |x|^2 - 2n\alpha \ge \alpha^2 R^2 - 2n\alpha.$$

So if we take α large enough,

 $\Delta v \geq 0$

on A(R/2, R). On $\partial B_{R/2}$,

$$v = u + \varepsilon (\mathrm{e}^{-\alpha (R/2)^2} - \mathrm{e}^{-\alpha R^2}).$$

Since u < M on $\partial B_{R/2}$,

$$\max_{\partial B_{R/2}} u < M.$$

So we could take ε small enough such that

$$\max_{\partial B_{R/2}} u + \varepsilon < M.$$

Now apply weak maximum principle to v on A(R/2, R). Since v = u on ∂B_R and v < Mon $\partial B_{R/2}$, $v \le M$ on A(R/2, R). So v attain its maximum at x_0 , and

$$\frac{\partial v}{\partial n}(x_0) \ge 0.$$

So

$$\frac{\partial v}{\partial n}(x_0) = \frac{\partial u}{\partial n}(x_0) - 2\varepsilon \alpha e^{-\alpha R^2} R \ge 0.$$

Therefore,

$$\frac{\partial u}{\partial n}(x_0) > 0.$$